metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: Q16⋊4D6, SD16⋊6D6, D24⋊3C22, C24.5C23, M4(2)⋊12D6, C12.24C24, D12.17C23, Dic6.17C23, C8⋊D6⋊3C2, Q8⋊3D6⋊3C2, (C2×Q8)⋊26D6, (S3×C8)⋊5C22, D4⋊S3⋊7C22, C4○D4.46D6, D6.55(C2×D4), (C4×S3).45D4, C4.192(S3×D4), Q16⋊S3⋊2C2, C8.C22⋊6S3, C3⋊C8.12C23, C8.5(C22×S3), D4⋊D6⋊10C2, D24⋊C2⋊1C2, C24⋊C2⋊6C22, C8⋊S3⋊6C22, Q8.7D6⋊3C2, C12.245(C2×D4), (S3×D4)⋊10C22, (S3×M4(2))⋊4C2, C4.24(S3×C23), (C6×Q8)⋊21C22, (S3×Q8)⋊12C22, (C3×Q16)⋊2C22, C3⋊Q16⋊5C22, C22.49(S3×D4), (C2×D12)⋊37C22, C3⋊4(D8⋊C22), (C4×S3).31C23, Dic3.62(C2×D4), Q8⋊2S3⋊6C22, (C3×SD16)⋊6C22, (C3×D4).17C23, D4.17(C22×S3), (C22×S3).44D4, C6.125(C22×D4), (C3×Q8).17C23, Q8.27(C22×S3), Q8.11D6⋊10C2, D4⋊2S3⋊11C22, (C2×C12).115C23, (C2×Dic3).196D4, Q8⋊3S3⋊11C22, C4○D12.31C22, (C3×M4(2))⋊6C22, C4.Dic3⋊15C22, C2.98(C2×S3×D4), (S3×C4○D4)⋊5C2, (C2×C6).70(C2×D4), (C3×C8.C22)⋊2C2, (C2×Q8⋊3S3)⋊17C2, (S3×C2×C4).163C22, (C2×C4).99(C22×S3), (C3×C4○D4).26C22, SmallGroup(192,1336)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 720 in 262 conjugacy classes, 99 normal (51 characteristic)
C1, C2, C2 [×7], C3, C4 [×2], C4 [×6], C22, C22 [×11], S3 [×5], C6, C6 [×2], C8 [×2], C8 [×2], C2×C4, C2×C4 [×15], D4, D4 [×13], Q8, Q8 [×2], Q8 [×3], C23 [×3], Dic3 [×2], Dic3, C12 [×2], C12 [×3], D6 [×2], D6 [×8], C2×C6, C2×C6, C2×C8 [×2], M4(2), M4(2) [×3], D8 [×4], SD16 [×2], SD16 [×6], Q16 [×2], Q16 [×2], C22×C4 [×3], C2×D4 [×4], C2×Q8, C2×Q8, C4○D4, C4○D4 [×11], C3⋊C8 [×2], C24 [×2], Dic6, Dic6, C4×S3 [×4], C4×S3 [×7], D12, D12 [×2], D12 [×6], C2×Dic3, C2×Dic3, C3⋊D4 [×3], C2×C12, C2×C12 [×2], C3×D4, C3×D4, C3×Q8, C3×Q8 [×2], C3×Q8, C22×S3, C22×S3 [×2], C2×M4(2), C4○D8 [×4], C8⋊C22 [×4], C8.C22, C8.C22 [×3], C2×C4○D4 [×2], S3×C8 [×2], C8⋊S3 [×2], C24⋊C2 [×2], D24 [×2], C4.Dic3, D4⋊S3 [×2], Q8⋊2S3 [×4], C3⋊Q16 [×2], C3×M4(2), C3×SD16 [×2], C3×Q16 [×2], S3×C2×C4, S3×C2×C4 [×2], C2×D12, C2×D12, C4○D12, C4○D12, S3×D4, S3×D4, D4⋊2S3, D4⋊2S3, S3×Q8, Q8⋊3S3, Q8⋊3S3 [×4], Q8⋊3S3 [×2], C6×Q8, C3×C4○D4, D8⋊C22, S3×M4(2), C8⋊D6, Q8⋊3D6 [×2], Q8.7D6 [×2], Q16⋊S3 [×2], D24⋊C2 [×2], Q8.11D6, D4⋊D6, C3×C8.C22, C2×Q8⋊3S3, S3×C4○D4, D24⋊C22
Quotients:
C1, C2 [×15], C22 [×35], S3, D4 [×4], C23 [×15], D6 [×7], C2×D4 [×6], C24, C22×S3 [×7], C22×D4, S3×D4 [×2], S3×C23, D8⋊C22, C2×S3×D4, D24⋊C22
Generators and relations
G = < a,b,c,d | a24=b2=c2=d2=1, bab=a-1, cac=a13, dad=a5, cbc=a12b, dbd=a16b, cd=dc >
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)
(1 24)(2 23)(3 22)(4 21)(5 20)(6 19)(7 18)(8 17)(9 16)(10 15)(11 14)(12 13)(25 38)(26 37)(27 36)(28 35)(29 34)(30 33)(31 32)(39 48)(40 47)(41 46)(42 45)(43 44)
(1 13)(3 15)(5 17)(7 19)(9 21)(11 23)(26 38)(28 40)(30 42)(32 44)(34 46)(36 48)
(1 26)(2 31)(3 36)(4 41)(5 46)(6 27)(7 32)(8 37)(9 42)(10 47)(11 28)(12 33)(13 38)(14 43)(15 48)(16 29)(17 34)(18 39)(19 44)(20 25)(21 30)(22 35)(23 40)(24 45)
G:=sub<Sym(48)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32)(39,48)(40,47)(41,46)(42,45)(43,44), (1,13)(3,15)(5,17)(7,19)(9,21)(11,23)(26,38)(28,40)(30,42)(32,44)(34,46)(36,48), (1,26)(2,31)(3,36)(4,41)(5,46)(6,27)(7,32)(8,37)(9,42)(10,47)(11,28)(12,33)(13,38)(14,43)(15,48)(16,29)(17,34)(18,39)(19,44)(20,25)(21,30)(22,35)(23,40)(24,45)>;
G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48), (1,24)(2,23)(3,22)(4,21)(5,20)(6,19)(7,18)(8,17)(9,16)(10,15)(11,14)(12,13)(25,38)(26,37)(27,36)(28,35)(29,34)(30,33)(31,32)(39,48)(40,47)(41,46)(42,45)(43,44), (1,13)(3,15)(5,17)(7,19)(9,21)(11,23)(26,38)(28,40)(30,42)(32,44)(34,46)(36,48), (1,26)(2,31)(3,36)(4,41)(5,46)(6,27)(7,32)(8,37)(9,42)(10,47)(11,28)(12,33)(13,38)(14,43)(15,48)(16,29)(17,34)(18,39)(19,44)(20,25)(21,30)(22,35)(23,40)(24,45) );
G=PermutationGroup([(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)], [(1,24),(2,23),(3,22),(4,21),(5,20),(6,19),(7,18),(8,17),(9,16),(10,15),(11,14),(12,13),(25,38),(26,37),(27,36),(28,35),(29,34),(30,33),(31,32),(39,48),(40,47),(41,46),(42,45),(43,44)], [(1,13),(3,15),(5,17),(7,19),(9,21),(11,23),(26,38),(28,40),(30,42),(32,44),(34,46),(36,48)], [(1,26),(2,31),(3,36),(4,41),(5,46),(6,27),(7,32),(8,37),(9,42),(10,47),(11,28),(12,33),(13,38),(14,43),(15,48),(16,29),(17,34),(18,39),(19,44),(20,25),(21,30),(22,35),(23,40),(24,45)])
Matrix representation ►G ⊆ GL8(𝔽73)
46 | 46 | 60 | 60 | 0 | 0 | 0 | 0 |
27 | 19 | 13 | 47 | 0 | 0 | 0 | 0 |
13 | 13 | 27 | 27 | 0 | 0 | 0 | 0 |
60 | 26 | 46 | 54 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 54 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 46 |
0 | 0 | 0 | 0 | 46 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 27 | 0 | 0 |
27 | 19 | 13 | 47 | 0 | 0 | 0 | 0 |
46 | 46 | 60 | 60 | 0 | 0 | 0 | 0 |
60 | 26 | 46 | 54 | 0 | 0 | 0 | 0 |
13 | 13 | 27 | 27 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 54 |
0 | 0 | 0 | 0 | 0 | 0 | 46 | 46 |
0 | 0 | 0 | 0 | 27 | 54 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 46 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 27 | 54 | 0 | 0 |
0 | 0 | 0 | 0 | 46 | 46 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 27 | 54 |
0 | 0 | 0 | 0 | 0 | 0 | 46 | 46 |
G:=sub<GL(8,GF(73))| [46,27,13,60,0,0,0,0,46,19,13,26,0,0,0,0,60,13,27,46,0,0,0,0,60,47,27,54,0,0,0,0,0,0,0,0,0,0,46,27,0,0,0,0,0,0,0,27,0,0,0,0,27,0,0,0,0,0,0,0,54,46,0,0],[27,46,60,13,0,0,0,0,19,46,26,13,0,0,0,0,13,60,46,27,0,0,0,0,47,60,54,27,0,0,0,0,0,0,0,0,0,0,27,46,0,0,0,0,0,0,54,46,0,0,0,0,27,46,0,0,0,0,0,0,54,46,0,0],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,72,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,27,46,0,0,0,0,0,0,54,46,0,0,0,0,0,0,0,0,27,46,0,0,0,0,0,0,54,46] >;
33 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 6A | 6B | 6C | 8A | 8B | 8C | 8D | 12A | 12B | 12C | 12D | 12E | 24A | 24B |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 12 | 12 | 12 | 12 | 12 | 24 | 24 |
size | 1 | 1 | 2 | 4 | 6 | 6 | 12 | 12 | 12 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 6 | 12 | 2 | 4 | 8 | 4 | 4 | 12 | 12 | 4 | 4 | 8 | 8 | 8 | 8 | 8 |
33 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 8 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | |
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | S3 | D4 | D4 | D4 | D6 | D6 | D6 | D6 | D6 | S3×D4 | S3×D4 | D8⋊C22 | D24⋊C22 |
kernel | D24⋊C22 | S3×M4(2) | C8⋊D6 | Q8⋊3D6 | Q8.7D6 | Q16⋊S3 | D24⋊C2 | Q8.11D6 | D4⋊D6 | C3×C8.C22 | C2×Q8⋊3S3 | S3×C4○D4 | C8.C22 | C4×S3 | C2×Dic3 | C22×S3 | M4(2) | SD16 | Q16 | C2×Q8 | C4○D4 | C4 | C22 | C3 | C1 |
# reps | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 1 |
In GAP, Magma, Sage, TeX
D_{24}\rtimes C_2^2
% in TeX
G:=Group("D24:C2^2");
// GroupNames label
G:=SmallGroup(192,1336);
// by ID
G=gap.SmallGroup(192,1336);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,387,1123,185,136,438,235,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^24=b^2=c^2=d^2=1,b*a*b=a^-1,c*a*c=a^13,d*a*d=a^5,c*b*c=a^12*b,d*b*d=a^16*b,c*d=d*c>;
// generators/relations